Skip to content

Review Outline for System Dynamics

Chapter 1 Complex Number

  1. Rectangular form and polar form
    • \(z=a+bj\) (a,b) are the coordinate in complex plane
    • \(z=|z|e^{j\theta},|z|=\sqrt{a^2+b^2},\theta=arctan(\frac{b}{a})\)
  2. Euler’s Formula
    • \(e^{j\theta}=cos(\theta)+jsin(\theta)\)
  3. Complex operations
    • Complex conjugate: \(z^*=a-bj=|z|e^{-j\theta}\)
    • Addition and Subtraction
    • Multiplication: \(z_1z_2=|z_1||z_2|e^{j(\theta_1+\theta_2)}\)
    • Division: \(\frac{z_1}{z_2}=\frac{|z_1|}{|z_2|}e^{j(\theta_1-\theta_2)}\)
    • Inverse: \(z^{-1}=|z|^{-1}e^{-j\theta}\)
  4. Complex variable and complex function
    • \(s=\sigma+j\omega,~\sigma~and~\omega\in R\)
    • \(F(s)=F_x+jF_y\), \(F_x\) and \(F_y\) are real functions
  5. zeros and poles of a complex function
    • \(F(s)=\frac{k(s+z_1)(s+z_2)...(s+z_m)}{(s+p_1)(s+p_2)...(s+p_n)}\)
    • zeros: \(-z_1,-z_2,...,-z_m\)
    • poles: \(-p_1,-p_2,...,-p_n\)
    • In practice, the number of zeros is always less than or equal to the number of poles, \(m\le n\)

Chapter 2 Laplace Transform

  1. Definition of Laplace Transform (L.T.)
  2. Existence criteria
  3. Unit step function
    • Used to transform the signal into L.T. applicable form
  4. Laplace Transform table
  5. Time delay and damping effect
  6. Superposition of Laplace Transform
    • Used to decompose the general input signal into typical forms easier for L.T.
  7. Solving Differential Equation
    • From time domain to Laplace domain, back to time domain
  8. Final Value Theorem
    • Used to compute the steady-state value of the output

Chapter 3 Partial Fraction Expansion (Work for L.T.)

\[ X(s)=\frac{b_0+b_1s+...+b_ms^m}{a_0+a_1s+...+a_ns^n}=\frac{B(s)}{A(s)} \]
  1. Work by hand
    • \(m\lt n\)
      • Distinct poles
      • Repeated poles
    • \(m\ge n\)
      • Distinct poles
      • Repeated poles
  2. Matlab
    • Matlab Convention
      • The power of polynomials are in descending form and the power of poles are in ascending form

Chapter 4 Mechanical system All models are wrong but some are useful

  1. Spring in series and paraller
  2. Spring-mass system
    • EOM
    • L.T.
  3. Spring-mass-damper system
    • EOM
    • L.T.
  4. Characteristic equation
    • Solution in three situations
      • Complex Conjugates
      • One real root
      • Two real roots
    • Damping Ration
      • Underdamped (Exponentially decaying sinusoid)
      • Critically damped (Exponential decaying)
      • Overdamped (Exponential decaying)
    • Natural frequency and damped natural frequency

Chapter 5 Transfer Function

  1. Transfer function (TF)
    • Definition
      • \(TF(s)=G(s)=\frac{Y(s)}{U(s)}=\frac{output}{input}\)
      • Suppose zero initial condition
      • Only applicable to linear, constant coefficient, differential equation
    • Block Diagram (a graphical representation of TF)
      • elements: block, constant, summing point…

Chapter 6 Transient and Steady-State Response

  1. Two aspects of the construction of response
    • Transient repsonse (due to initial condition and input) + steady-state response (due to input)
    • Free vibration (dut to initial condition) + Forced vibration (due to input)
  2. Find the steady-state response using Final Value Theorem

Chapter 7 State-Space Model

  1. Definition of state-space model
    • \(\dot{x}=Ax+Bu,~y=Cx+Du\)
    • Applicable to nonlinear, time-varying differential equation
  2. Example of a 2 DOF mechanical system
  3. Block diagram of state-space model
  4. Transfer function of state-space model
    • \(G(s)=C(sI-A)^{-1}B+D=\frac{Y(s)}{U(s)}\)

Chapter 8 Electrical Systems

  1. Basic elements
    • Capacitor
      • \(C=\frac{q}{e_c}\)
      • \(i=C\frac{de_c}{dt}\)
    • Inductor
      • \(L=\frac{e_L}{di/dt},~e_L=L\frac{di}{dt}\)
  2. Example: RL circuit with step input voltage

Chapter 9 DC Motor

  • Modelling Process

    • Electrical System

      \(L_a\dot{i_a}+R_ai_a+e_b=e_a\) (KVL)

      \(e_b=k_b\dot{\theta}\) (back emf)

    • Motor Mechanical System

      \(J\ddot{\theta}+b\dot{\theta}=T-T_L\) (EOM)

      \(T=ki_a\) (Physical Law)

    • Load

      \(J_L\ddot{\theta}+b_L\dot{\theta}=T_L\) (EOM)

    • Gear (optional)

      Ideal Gear: \(T_2=\frac{r_2}{r_1}T_1\) (Conservation of Power)

      General: \(J_1\frac{r_2}{r_1}\ddot{\theta_1}+b_1\frac{r_2}{r_1}\dot{\theta_1}+J_2\ddot{\theta_2}+b_2\dot{\theta_2}=\frac{r_2}{r_1}T_1-T_2\) (EOM)

    • Coupler (optional)

      \(T_C=k_{tc}(\theta-\theta_L)\)

Chapter 10 Fluid System

  1. Reynold Number
    • Inertial force vs Viscous force
    • Turbulent vs Laminar
  2. Valve equation (Relationship between head H and flow rate Q)
    • Laminar
    • Turbulent
  3. Capacitance
    • Conservation of Volume
  4. Example: Tank system
    • Equation 1: conservation of volume
    • Equation 2: valve equation

Chapter 11 Linearization

  1. Method: First order Taylor Series Expansion
  2. Example: Used in single tank system with turbulent in vavle

Chapter 12 Time Domain Analysis

  1. First order ODE system \(a\ddot{x}+b\dot{x}=0\)
    • Time constant T: \(T=\frac{a}{b}\)
    • Typical values
      • 0.37 at T, 0.83 at 2T, 0.95 at 3T, 0.98 at 4T
  2. Second order ODE system
    • only for underdamped system
    • Time constant for the Exponential Decay Envelop
      • \(T=\frac{1}{\xi \omega_n}\)
    • Experimentally determine the dample natural frequency and damping ration
      • \(T=\frac{2\pi}{\omega_d},~ln(\frac{x_1}{x_2})=\frac{2\pi\xi}{\sqrt{1-\xi^2}}\)
    • Some terminology
      • Settling time-converge to 2% or 5%
      • Overshoot \(\%M_p\frac{x_{peak}-x_{ss}}{x_{ss}}\)
      • Peak time-rise to peak
      • Delay time-reach 50% of the steady-state value
      • Rise time-from 10% to 90% of the steady-state value

Chapter 13 Frequency Domain Analysis

  1. Steady-state response of a system to a sinusoidal input
    • \(u(t)=Psin(\omega t),~x_{ss}=Xsin(\omega t+\phi)\)
    • \(X\) and \(\phi\) are determined by \(\omega\)
  2. Forced vibration without damping
  3. Forced vibration with damping
  4. Sinusoidal transfer function (Frequency response function)
    • step 1: obtain transfer function \(G(s)\)
    • step 2: let \(s\) equal to \(jw\)
    • step 3: \(\frac{x_0}{P}=|G(jw)|,~\phi=\angle G(jw)\)

Chapter 14 Bode Plot

  1. Decibel (dB)

    \(AR_{dB}=20log(|G(jw)|)=20log(AR)\)

  2. Example

Chapter 15 Vibration Isolation

  1. Imbalance in rotatin mechanical systems
  2. Vibration isolation

    \(G(jw)=\frac{1+j(2\xi\Omega)}{(1-\Omega^2)+j(2\xi\Omega)},~\Omega=\frac{\omega}{\omega_n}\)

    • Force excitation
    • Motion excitation
    • Transimissibility TR
      • \(TR\lt1~when~\Omega\gt\sqrt{2}\)

Chapter 16 Vibration Absorber

  • Condition for zero vibration in main system

    \(\sqrt{\frac{k_a}{m_a}}=\omega_n\)

Chapter 17 Mode Shape

  • Example for free vibration of 2 DOF system

Chapter 18 PID

  1. Block diagram of feedback control system
  2. PID controller
  3. General conclusion
  4. Criterion for stability of PID controller

Chapter 19 Performance of second order system

  1. Peak Time
  2. Percent Overshoot
  3. Settling Time

Chapter 20 Stability

  1. Stable
  2. Marginally stable
  3. Unstable