
An Automated Assembly
Line for the Luban Lock
082100511, Smart Factory

Group SharpShooters

Full Name Student ID

Xinlei Zhang 202030101256
Ze’an He 202030020342
Yile Shen 202030020205

Juncong Lan 202030020113
Yuli Yang 202030322149
Jinan Guo 201930031052

Github Page
Tutor: Dr.Gang Chen

GZIC, June 30, 2023

https://guanqing-github.github.io/SharpShooters/Automated%20Line/

Contents

1 Introduction 1
1.1 Design Background . 1
1.2 Project Description . 1
1.3 Project Assignment . 2

2 Problem Formulation in Mathematics 2
2.1 Mathematical Modeling: Traditional Job Shop Scheduling Problem (JSP) and Flexible Job

Shop Scheduling Problem (FJSP) . 2
2.1.1 Traditional Job Shop Scheduling Problem (JSP) 2
2.1.2 Flexible Job Shop Scheduling Problem (FJSP) . 3
2.1.3 Comparison . 4

2.2 Assumptions and Clarifications . 5
2.3 Mathematical Model . 5

3 Optimization Method 7
3.1 Optimization Methods for Flexible Job Shop Scheduling Problem 7

3.1.1 Combinatorial Optimization and FJSP . 7
3.1.2 Common Algorithms for Combinatorial Optimization and FJSP 7

3.2 MATLAB Optimization Toolbox . 8
3.3 MATLAB code . 8

4 Plant Simulation 10
4.1 Software Description . 10
4.2 Components . 11

4.2.1 Material Flow . 11
4.2.2 Information Flow . 13

4.3 Modeling . 14
4.3.1 Part . 14
4.3.2 Conveyor . 15
4.3.3 Pick and place robot . 16
4.3.4 Processing robot . 16
4.3.5 Assembly robot . 17
4.3.6 Complete process . 17

5 Results 18
5.1 Plant setting . 18
5.2 Simulation results . 19

6 Conclusion 20

7 Acknowledgement 20

8 References 20

9 Appendix I: Operation Space 21

10 Appendix II: MATLAB Code 21

SharpShooters An Automated Assembly Line for the Luban Lock

1 | Introduction

1.1 | Design Background
The Flexible Job Shop Problem (FJSP) is a complex scheduling problem that arises in manufacturing
and production environments. It is an extension of the classical Job Shop Problem (JSP) and addresses
the need for flexibility in scheduling operations.In a Job Shop, a set of jobs with specific operations
needs to be processed on a set of machines. Each job consists of multiple operations that must be
performed in a specific order, and each operation requires a certain amount of time to be processed on
a particular machine. The objective is to determine the sequence of operations for each job and assign
them to machines in such a way that the overall makespan (i.e., the total time required to complete all
jobs) is minimized.The Flexible Job Shop Problem introduces the concept of machine flexibility, where
each operation can be processed on one of several alternative machines. This allows for more options in
scheduling and can be useful when certain machines are busy or unavailable. The FJSP takes into account
the availability of machines, the sequence-dependent setup times between operations, and the objective of
minimizing the makespan.
The FJSP is known to be a highly combinatorial and NP-hard problem, meaning that finding the optimal
solution becomes exponentially more difficult as the problem size increases. Many heuristic and meta-
heuristic algorithms have been developed to tackle the FJSP, including genetic algorithms, tabu search,
simulated annealing, and particle swarm optimization, among others.
Luban Lock is a traditional Chinese puzzle toy. The Luban Lock consists of a set of interlocking wooden
pieces that form a three-dimensional structure. The goal of the puzzle is to disassemble the pieces by
manipulating them in a specific way and then reassemble them back into the original structure. The Luban
Lock typically consists of several wooden pieces, each with notches, slots, or other interlocking mechanisms.
The challenge lies in figuring out the correct sequence of movements and rotations required to unlock and
separate the pieces. The solution often involves a series of precise maneuvers and spatial reasoning. The
Luban Lock is not only a recreational puzzle but also serves as a metaphor for problem-solving, patience,
and craftsmanship in Chinese culture.
Solving the Luban Lock can be an enjoyable and challenging activity that promotes logical thinking,
dexterity, and perseverance. It is often seen as an engaging brain teaser or a decorative item that showcases
the ingenuity of traditional Chinese craftsmanship.

1.2 | Project Description
For this project, the main task is to assemble Luban lock with an automatic assembly line. The Luban
lock has nine parts, which need to be assembled in sequence. There are a total of nine robots and two
CNC machines on the assembly line. Our target is to reasonably allocate the machines on the assembly
line,in order to assemble ten Luban lock in the shortest time.

Page 1

SharpShooters An Automated Assembly Line for the Luban Lock

The functions of each robort on the assembly line are as follows:

■ R9: Grab and place items to designated locations.

■ R2,R7: Grab and place items to designated locations.

■ R3 to R6: Process all parts of Luban lock.

■ R1,R8: Assemble the processed parts into Luban lock.

■ CNC1,CNC2: Label the assembled Luban lock.

The specific assembly process of a single Luban lock is as follows: R9 puts the parts into one of R3 to R6
for processing, and R9 places the processed parts on the conveyor belt after processing. When the parts
are transferred to the designated position, R2 or R7 will place the processed parts on the assembly table
of R1 or R8 . After all nine parts are placed, R1 or R8 will assemble the parts. After assembling, R2 or
R7 will place the assembled Luban lock on the conveyor belt.When the Luban lock is transferred to the
designated position, R9 will place the Luban lock on the workbench of CNC , and CNC will label the
Luban lock. After the Luban lock is labeled, R9 will put the Luban lock into the storage.

1.3 | Project Assignment
Scheduling Algorithm: XinLei Zhang, YuYang Xie, YuLi Yang;
Plant Simulation : JunCong Lan, Ze’An He;
Project Report : JiNan Guo, YiLe Shen.

2 | Problem Formulation in Mathematics

2.1 | Mathematical Modeling: Traditional Job Shop Scheduling Problem (JSP) and
Flexible Job Shop Scheduling Problem (FJSP)

The traditional Job Shop Scheduling Problem (JSP) and the Flexible Job Shop Scheduling Problem
(FJSP) are two well-known optimization problems in production scheduling. In this subsection, we will
describe the mathematical models for each problem, describing their process variables, objective function
and constraints in an abstract level.

2.1.1 | Traditional Job Shop Scheduling Problem (JSP)

The JSP involves a set of jobs, each with a predefined sequence of operations that need to be performed.
Additionally, there is a set of machines capable of executing specific operations. The objective is to
minimize the makespan, which represents the total time required to complete all jobs in the system.
Table 2.1 presents the variables used in the mathematical model for the JSP:
Objective Function:

Minimize: Makespan

Here, the makespan can be expressed as the completion time of the last operation of the last job:

Makespan = max
j∈J,o∈Oj

{s[j][o] + p[j][o]}

Constraints:

1. s[j][o] + p[j][o] ≤ s[j][o+ 1] ∀j ∈ J, o ∈ Oj

2. s[j][o] ≥ s[j′][o′] + p[j′][o′] ∀j, j′ ∈ J, o ∈ Oj , o
′ ∈ Oj′

3.
∑
m∈M

x[j][o][m] = 1 ∀j ∈ J, o ∈ Oj

4.
∑
o∈Oj

x[j][o][m] ≤ 1 ∀j ∈ J, m ∈ M

5.
∑
j∈J

x[j][o][m] ≤ 1 ∀o ∈ O, m ∈ M

Page 2

SharpShooters An Automated Assembly Line for the Luban Lock

Variable Definition

J
Set of jobs, where each job j ∈ J has a
predefined sequence of operations to be

performed.

M
Set of machines, where each machine m ∈ M
is capable of executing specific operations.

O
Set of operations, where each operation o ∈ O
corresponds to a specific task within a job.

p[j][o] Processing time required for operation o of
job j.

s[j][o] Start time of operation o of job j.
C[j][o] Completion time of operation o of job j.

x[j][o][m]
Binary decision variable indicating whether
operation o of job j is processed on machine

m.

Table 2.1: Variables of the Traditional JSP

Here, Constraint 1 ensures that the start time of each operation precedes the start time of the subsequent
operation in the job’s sequence. Constraint 2 enforces the precedence relationship between operations of
different jobs. Constraint 3 guarantees that each operation is assigned to exactly one machine. Constraint
4 ensures that each machine processes at most one operation at a time. Constraint 5 guarantees that each
operation is assigned to at most one machine across all jobs.

2.1.2 | Flexible Job Shop Scheduling Problem (FJSP)

The FJSP extends the traditional JSP by introducing additional flexibility in selecting machines for each
operation. Each job still has a predefined sequence of operations, but now there is a set of machines
available for processing each operation. The objective remains the same: minimizing the makespan.
Additionally, the FJSP considers the transfer time between machines, which is a predefined input variable.
The mathematical model for the FJSP with transfer time can be formulated as follows:

Objective Function:

Minimize: Makespan

Here, the makespan can be expressed as the completion time of the last operation of the last job:

Makespan = max
j∈J,o∈Oj

{s[j][o] + p[j][o]}

Constraints:

1. s[j][o] + p[j][o] +
∑

m′∈M [j][o]\{m}

t[m′][m] ≤ s[j][o+ 1] ∀j ∈ J, o ∈ Oj , m ∈ M [j][o]

2. s[j][o] ≥ s[j′][o′] + p[j′][o′] +
∑

m′∈M [j′][o′]\{m}

t[m′][m] ∀j, j′ ∈ J, o ∈ Oj , o
′ ∈ Oj′ , m ∈ M [j][o], m′ ∈ M [j′][o′]

3.
∑

m∈M [j][o]

x[j][o][m] = 1 ∀j ∈ J, o ∈ Oj

4.
∑
o∈Oj

x[j][o][m] ≤ 1 ∀j ∈ J, m ∈ M

5.
∑
j∈J

x[j][o][m] ≤ 1 ∀o ∈ O, m ∈ M

The variables and their definitions are summarized in Table 2.2.
In addition to the constraints of the JSP, the FJSP introduces Constraint 1, which ensures that the

Page 3

SharpShooters An Automated Assembly Line for the Luban Lock

Variable Definition

J
Set of jobs, where each job j ∈ J has a
predefined sequence of operations to be

performed.

M
Set of machines, where each machine m ∈ M
is capable of executing specific operations.

O
Set of operations, where each operation o ∈ O
corresponds to a specific task within a job.

p[j][o] Processing time required for operation o of
job j.

s[j][o] Start time of operation o of job j.

t[m′][m] Transfer time required to move the processing
from machine m′ to machine m.

x[j][o][m]
Binary decision variable that takes value 1 if
operation o of job j is assigned to machine m,

and 0 otherwise.

Table 2.2: Variables of the Flexible Job Shop Scheduling Problem (FJSP)

start time of each operation considers both the processing time and the transfer time between machines.
Constraint 2 enforces the precedence relationship between operations of different jobs, taking into account
the processing time and transfer time as well. Constraint 3 guarantees that each operation is assigned
to exactly one machine from the available set of machines. Constraints 4 and 5 are similar to the JSP,
ensuring that each machine processes at most one operation at a time, and each operation is assigned to
at most one machine across all jobs.

2.1.3 | Comparison

The Traditional Job Shop Scheduling Problem (JSP) and the Flexible Job Shop Scheduling Problem
(FJSP) can be compared based on several aspects:

■ Machine Assignment:

□ JSP: The machines are fixed for each operation and cannot be changed during the scheduling
process.

□ FJSP: The FJSP allows for a set of machines available for each operation, providing flexibility
in machine assignment.

■ Scheduling Flexibility:

□ JSP: The JSP has a fixed job and operation sequence that needs to be strictly followed.
□ FJSP: The FJSP provides more flexibility in selecting the sequence of operations for each job,

allowing for improved scheduling possibilities.

■ Complexity:

□ JSP: The JSP is a well-studied problem with established solution techniques and algorithms.
□ FJSP: The FJSP is an extension of the JSP and is generally considered more complex due to

the added flexibility in machine assignment and operation sequencing.

■ Optimization Objective:

□ JSP and FJSP: Both problems aim to minimize the makespan, which represents the total time
required to complete all jobs.

■ Solution Methods:

□ JSP: Various solution methods exist for the JSP, including mathematical programming, heuristic
algorithms, and metaheuristic approaches.

□ FJSP: The FJSP often requires more advanced solution methods to handle the increased
complexity, such as hybrid algorithms or decomposition-based approaches.

Page 4

SharpShooters An Automated Assembly Line for the Luban Lock

2.2 | Assumptions and Clarifications
In this subsection, we will give the assumptions we made in our simulation and give reasonable clarifications.

■ Assumption 1: The R9 robot can pick the machined part from the workspace of R3, R4, R5, R6 and
place it only on the point L8 on the conveyor belt.
Clarification: This assumption is made mainly considering that the robot R9 cannot be used to
transfer the part between different points on the conveyor belt, or the problem will become more
complex to compare the transfer time by the conveyor belt and the robot R9. Besides, since the
function of R9 is only pick and place, it’s reasonable to assume that robot R9 cannot be used to
transfer part between different locations.

■ Assumption 2: The R9 robot can only pick the assembled Luban lock from the point L1 on the
conveyor belt and place it on the workspace of CNC1, CNC2.
Clarification: This assumption is made to simplify the dynamic process of robot R9, since it can move
from two different points and different reachable range at different points. With this assumption,
the robot R9 must move at the left point and pick the assembled Luban Lock at L1 and place it on
CNC1 or CNC2.

■ Assumption 3: The nine parts of one Luban lock should be sequentially machined and placed on
the workspace of R8 or R1 by R7 or R2. But the sequence for parts from different Luban lock isn’t
limited.
Clarification: This assumption is made mainly considering the difficulties in building the plant in
simulation. In real situation, it’s also reasonable to machine nine parts of a Luban lock sequentially,
since these nine parts differ from each other and should be placed on R1 or R8 at certain sequence.

■ Assumption 4: There exists sensors on the conveyor belt, which will stop the part on the conveyor
belt when the part reaches its next station.
Clarification: This assumption is made to simplify the calculation of transferring time between
each machine. It’s also reasonable and practical since we can install proximity sensors and RFID
equipments to detect whether there is one part at certain point and identify that part. With this
assumption, the transferring time between every two machine will be minimized and determined
solely by the distance and speed of conveyor belt.

■ Assumption 5: No machine will experience the situation of breakdown in our consideration.
Clarification: This assumption is made to simplify the problem, although breakdown happens in
real plant and the commonly used algorithms are capable of addressing this situation. The situation
of breakdown will be considered in future.

2.3 | Mathematical Model
In this subsection, we will explain the mathematical model of the FJSP specifically for Luban lock in our
problem. At first, we define the input variables, which are Job J , Machine M , Operation O, Processing
time p, Transfer time t, Precedence Matrix U , Scheduling variable x, Start time s and Completion time c,
which are summarized in Table 2.3
The precedence matrix U is defined as follows,

U =

0 1 . . . 1 1
0 0 1 . . . 1

0
.

...
0 0 0 . . . 0

33×33

(2.1)

Page 5

SharpShooters An Automated Assembly Line for the Luban Lock

Variable Quantity
Type Definition

J Integer Set of jobs, where each job j ∈ J represents producing one
Luban lock, j ∈ [1, 10].

M Integer Set of machines, where m ∈ [1, 11] and
M = {R1, R2, R3, R4, R5, R6, R7, R8, R9, CNC1, CNC2} .

O Integer Set of operations, where o ∈ [1, 33]. The detailed operation
content is summarized in Fig. 9.1.

p[j][o][m] Continuous
Processing time required for operation o of job j on machine

m. These processing times are defined according to the
real-world situation and summarized in Table 5.1.

s[j][o][m] Continuous Starting time of operation o of job j on machine m.

t[m′][m] Continuous
Transferring time required to move the processing from

machine m′ to machine m, which is defined according to the
real-world situation and given in Eqn. 2.2.

x[j][o][m] Binary Binary decision variable that takes value 1 if operation o of job
j is assigned to machine m, and 0 otherwise.

U [o][o′] Binary
Precedence of operations in each job, which takes 1 if the

operation o should be scheduled ahead of operation o’, and 0
otherwise. The precedence sequence is given in Eqn. 2.1.

c[j][o][m] Continuous Completion time of operation o of job j on machine m.

Table 2.3: Variables of the Flexible Job Shop Scheduling Problem (FJSP)

Then, the transfer time t is defined as,

t =

0 0.75 inf inf inf inf inf inf inf inf inf
0.75 0 9 9 9 9 inf inf inf inf inf
inf 9 inf 0 inf inf 4.5 inf 1.5 inf inf
inf 9 inf inf 0 inf 4.5 inf 1.5 inf inf
inf 9 inf inf 0 inf 4.5 inf 1.5 inf inf
inf 9 inf inf inf inf 4.5 inf 1.5 inf inf
inf inf 4.5 4.5 4.5 4.5 0 0.75 inf 5.25 5.25
inf inf inf inf inf inf 0.75 0 inf inf inf
inf inf 1.5 1.5 1.5 1.5 inf inf 0 0.75 0.75
inf inf inf inf inf inf inf inf 0.75 0 inf
inf inf inf inf inf inf inf inf 0.75 inf 0

11×11

(2.2)

In this matrix, 0.75 represents the time for moving the part between adjacent points on the conveyor belt,
which equals to the unit length of conveyor belt divided by its speed. 9 represents moving throug 12 units
length, 4.5 represents 6 units length and 5.25 represents 7 units length. Specially, in the column 9 and
row 9, 0.75 and 1.5 represent the time for the operation of R9.
The mathematical model can be formulated as,

min
x[j][o][m]

makespan

s.t.

makespan ≥ c[j][o][m], for ∀j,∀o,∀m
c[j][o][m] == ∑11

m=1(s[j][o][m] + p[j][o][m]), for ∀j,∀o∑11
m=1 x[j][o][m] == 1, for ∀j,∀o

s[j][o1][m] + p[j][o1][m] ≤ s[j][o2][m], for∀j,∀U(o1, o2) = 1,∀m
s[j][o1][m] + p[j][o1][m] + t[m][l] ≤ s[j][o2][l], for ∀j,∀U(o1, o2) = 1,∀m, l

Page 6

SharpShooters An Automated Assembly Line for the Luban Lock

3 | Optimization Method

3.1 | Optimization Methods for Flexible Job Shop Scheduling Problem
3.1.1 | Combinatorial Optimization and FJSP

Combinatorial optimization is a field of study that deals with finding the best solution from a finite set
of possibilities for optimization problems with discrete variables, as illustrated in Fig. 3.1. It involves
searching through a large combinatorial space to identify the optimal arrangement or combination of
elements that satisfies certain constraints and optimizes a given objective function. The Flexible Job
Shop Scheduling Problem (FJSP) falls under the realm of combinatorial optimization due to its discrete
decision variables and the combinatorial nature of its solution space.
In the FJSP, the objective is to minimize the makespan by assigning operations to machines in an optimal
manner while respecting precedence constraints and resource limitations. The discrete variables in FJSP
include the assignment of operations to machines, the sequencing of operations within jobs, and the
allocation of time slots for each operation. The solution space of FJSP is combinatorial, as there are
multiple possible combinations and permutations of operations and machines to consider.

Figure 3.1: Illustration for combinatorial optimization problem

3.1.2 | Common Algorithms for Combinatorial Optimization and FJSP

Several algorithms have been developed to solve combinatorial optimization problems, including the
FJSP. Each algorithm has its own strengths and weaknesses, making them suitable for different problem
instances and requirements. Here, we review some commonly used algorithms for solving combinatorial
optimization problems and the FJSP:
1. Integer Linear Programming (ILP): ILP formulations provide a mathematical programming
approach to model and solve combinatorial optimization problems. They use binary or integer decision
variables to represent the choices and constraints of the problem. ILP solvers employ specialized algorithms,
such as branch-and-bound or cutting plane methods, to explore the solution space and find an optimal
solution. ILP offers exact solutions but may suffer from scalability issues for large problem instances.
2. Metaheuristics: Metaheuristic algorithms, such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and Simulated Annealing (SA), are iterative optimization techniques that use
heuristics to search through the solution space. These algorithms explore the space by iteratively
generating and improving candidate solutions. Metaheuristics are suitable for finding near-optimal
solutions and handling complex, large-scale combinatorial optimization problems. However, they do not
guarantee finding the global optimum.
3. Heuristic Search Algorithms: Heuristic search algorithms, including Depth-First Search (DFS),
Breadth-First Search (BFS), and A* algorithm, systematically explore the solution space by evaluating
promising paths or solutions based on heuristics. These algorithms are particularly effective for problems
with a defined search tree or graph structure. They may find an optimal solution if properly guided by
appropriate heuristics, but their performance heavily depends on the problem structure and quality of
heuristics.
4. Constraint Programming (CP): CP is a declarative programming approach that models and solves
combinatorial optimization problems using constraints and variables. CP solvers iteratively search for

Page 7

SharpShooters An Automated Assembly Line for the Luban Lock

feasible solutions by enforcing constraints and making local improvements. CP is suitable for problems
with complex constraints and can handle both discrete and continuous variables. However, it may struggle
with large problem instances due to the search complexity.
Each algorithm has its advantages and disadvantages, which are summarized in Table 3.1. The choice of
algorithm depends on the problem size, complexity, available computational resources, and the trade-off
between solution quality and computational time.

Algorithm Pros Cons
Integer Linear

Programming (ILP) Provides exact solutions Scalability issues for large
instances

Metaheuristics Suitable for large-scale problems No guarantee of global
optimality

Heuristic Search
Algorithms

Effective for defined search
structure

Performance depends on
problem structure

Constraint
Programming (CP) Handles complex constraints Search complexity for large

instances

Table 3.1: Pros and cons of commonly used algorithms

3.2 | MATLAB Optimization Toolbox
The MATLAB Optimization Toolbox, an extensive collection of functions and algorithms, can be effectively
utilized to solve complex optimization problems. In the context of the Flexible Job Shop Scheduling
Problem (FJSP), the Optimization Toolbox offers a wide range of optimization techniques that can be
leveraged to find optimal schedules and minimize the makespan.
By formulating the FJSP as a mathematical optimization problem, you can employ the Optimization
Toolbox’s capabilities to define the objective function, set constraints, and optimize the schedule. The
choice of specific optimization algorithms from the toolbox will depend on the characteristics of the
problem and the specific requirements.
For example, you can utilize the toolbox’s linear programming functions to solve FJSP instances with
linear objective functions and constraints. Alternatively, for more complex FJSP instances involving
nonlinear objective functions or constraints, you can apply nonlinear optimization algorithms provided by
the toolbox.
The Optimization Toolbox also enables the incorporation of additional features specific to the FJSP.
For instance, you can include custom transfer time between machines as input variables and constraints,
allowing for a more accurate representation of the scheduling problem.
By harnessing the power of the MATLAB Optimization Toolbox, you can efficiently explore the solution
space of the FJSP and identify schedules that optimize the makespan, ultimately improving the efficiency
and productivity of the job shop environment.

Citation: MathWorks. MATLAB Optimization Toolbox. Accessed June 30, 2023. https://www.
mathworks.com/products/optimization.html.

3.3 | MATLAB code
The pesudocode in the Algorithm 1 shows the structure of the MATLAB script used to solve the FJSP
problem. The complete MATLAB script can be found in the Appendix I, or downloaded in the page.
Next, we will explain the pesudocode line by line.

■ First, the problem data is defined, including the processing times (processingTimes), the availability
of machines for each operation (machineAvailability), and the transfer times between operations
(transferTimes).

■ The necessary variables and optimization problem object, problem, are created. These variables in-
clude the start times of operations (startTimes), the makespan (overall completion time, makespan),
and the completion times of each operation (completionTimes).

■ The objective sense of the problem is set to minimize, indicating that the goal is to minimize the
makespan.

Page 8

https://www.mathworks.com/products/optimization.html
https://www.mathworks.com/products/optimization.html

SharpShooters An Automated Assembly Line for the Luban Lock

Algorithm 1 Matlab Pseudocode
1: Define problem data
2: Initialize processingTimes matrix
3: Initialize U matrix
4: Initialize transferTimes matrix
5: Create a binary variable xschduling to represent operation assignment
6: Create an optimization problem object ’problem’
7: Create variables: startTimes, makespan, completionTimes
8: Set the objective sense of ’problem’ as ’minimize’
9: Add constraints for completion times of each operation

10: for each job j do
11: for each operation o do
12: Add constraint:

∑
m(startT imesjmo + processingT imesjmo) = completionT imesjo

13: Add constraint for makespan
14: for each job j do
15: Add constraint: makespan ≥ max{completionT imesj1, completionT imesj2, ..., completionT imesjm}
16: Add constraints for operation assignment and scheduling
17: for each job j do
18: for each operation o do
19: Add constraint:

∑
m xschdulingjmo

= 1
20: for each job j do
21: for each operation o1 do
22: for each operation o2 do
23: if Uo1o2 == 1 then
24: Add constraint: startT imesjmo1 + processingT imesjmo1 ≤ startT imesjmo2

25: Set the objective function of ’problem’ as ’makespan’
26: Choose a suitable solver and its options
27: Solve the optimization problem using the chosen solver and options
28: Print the solution, objective value, and solver status
29: Retrieve the solution values for xschduling, startTimes, makespan, completionTimes, etc.

■ Constraints are added to ensure the correct completion times for each operation. For each job and
operation, the sum of the start time and processing time of all machines assigned to that operation
should equal the completion time.

■ A constraint is added to guarantee that the makespan is greater than or equal to the maximum
completion time among all operations for each job.

■ Constraints are added to ensure that each operation is assigned to exactly one machine. For each
job and operation, the sum of the binary scheduling variables representing the assignment should
equal 1.

■ Constraints are added to enforce the scheduling order between operations based on the availability
of machines. For each pair of operations with a transfer time between them (indicated by the binary
matrix U), if the transfer is allowed (U = 1), the completion time of the first operation plus its
processing time should be less than or equal to the start time of the second operation.

■ The objective function of the problem is set as the makespan, indicating that the objective is to
minimize the overall completion time.

■ A suitable solver and its options are chosen to solve the optimization problem.

■ The optimization problem is solved using the chosen solver and options.

■ The solution, objective value, and other relevant information are obtained and can be further
analyzed or utilized as needed.

Page 9

SharpShooters An Automated Assembly Line for the Luban Lock

4 | Plant Simulation

4.1 | Software Description
To build the model, we use Plant Simulation software. Tecnomatix Plant Simulation is a powerful software
tool used for modeling, simulating, and optimizing complex manufacturing and logistics systems. It is
part of the Tecnomatix suite of digital manufacturing solutions developed by Siemens Digital Industries
Software.
Plant Simulation provides a comprehensive platform for creating virtual models of production systems,
including factories, assembly lines, warehouses, and material flow networks. It allows engineers, planners,
and decision-makers to analyze and optimize various aspects of the system, such as throughput, cycle
times, resource utilization, and material handling.
With Plant Simulation, users can visually design their production systems using a drag-and-drop interface
that includes a rich library of pre-built objects and components. These objects represent different entities,
such as machines, conveyors, operators, and storage areas, which can be combined and configured to build
a detailed simulation model.
Once the model is created, Plant Simulation enables users to define the behavior and interactions of the
various components using a powerful set of modeling and programming tools. This allows for the creation
of dynamic simulations that accurately represent the real-world system, including factors like variability,
breakdowns, maintenance schedules, and production rules.
Simulation scenarios can be run and analyzed to gain insights into system performance, identify bottlenecks,
optimize resource allocation, and evaluate alternative production strategies. Users can perform ”what-if”
analyses to test different scenarios, evaluate the impact of changes, and make informed decisions to
improve productivity, efficiency, and overall system performance.
In addition to its simulation capabilities, Plant Simulation offers features for statistical analysis, visualiza-
tion, and reporting. It provides tools for generating detailed reports, charts, and animations, which can
be used to communicate findings, present results, and facilitate collaboration among stakeholders.
The key uses of the software are:

■ Production System Design: Plant Simulation allows engineers and planners to design and optimize
production systems before their physical implementation. It helps in determining the layout, capacity,
and configuration of manufacturing facilities, including the arrangement of machines, workstations,
and material handling systems.

■ Process Optimization: The software enables users to analyze and optimize production processes to
improve efficiency and reduce cycle times. It helps identify bottlenecks, optimize resource allocation,
and streamline workflow to increase productivity and throughput.

■ Production Planning and Scheduling: Plant Simulation supports production planning and scheduling
activities by simulating different scenarios and evaluating their impact on system performance. It
helps in determining optimal production sequences, shift schedules, and resource utilization to meet
production targets and minimize downtime.

Figure 4.1: Tecnomatix Plant Simulation 2302 software

Page 10

SharpShooters An Automated Assembly Line for the Luban Lock

4.2 | Components
4.2.1 | Material Flow

In the modeling process, we totally use 8 parts in material flow, which are “Connector”, “Source”, “Part”,
“Container”, “Station”, “AssemblyStation”, “PickAndPlace”, “Conveyor”, and “Drain”.

Name Icon Effects

Connector

■ Material Flow Connection: The primary function of the
Connector object is to establish a material flow connection
between two objects within the same framework.

■ Interface Connection: The Connector object can also link
an object with the interface of a framework. The interface
represents the connection point between different frame-
works or modules within the simulation model.

■ Direction and Routing: Connectors can be configured to
define the direction and routing of material flow between
objects. Users can specify the path that entities will follow,
determining the sequence of objects or processes they will
pass through.

Source

■ Entity Generation: The Source object generates entities
according to a specified arrival pattern or rate. Users can
define the inter-arrival time between entities, allowing for
constant or time-varying arrivals.

■ Quantity and Capacity: Users can configure the Source
object to generate a specific quantity of entities at the
start of the simulation or continuously throughout the
simulation run. The capacity of the Source object can be
limited .

Part

■ Representation of Physical Objects: The Part object rep-
resents tangible items within the simulation model. Each
Part object corresponds to a specific entity or item that
moves through the production system.

■ Attributes and Characteristics: Parts can be assigned
attributes and characteristics to represent their specific
properties. These attributes can be used to define the
behavior and constraints of the parts within the simulation
model.

■ Statistical Analysis: The Part object can be used to collect
statistical data about part flow, cycle times, processing
times, and other performance metrics.

Page 11

SharpShooters An Automated Assembly Line for the Luban Lock

Name Icon Effects

Container

■ Storage and Transport: The primary function of the Con-
tainer object is to provide a designated space for storing
entities. It represents physical storage units that hold
items within the simulation model. Containers can be
stationary or mobile, enabling the transport of entities
between different locations within the system.

■ Capacity and Constraints: Containers have a defined ca-
pacity that determines the maximum number of entities
they can hold.

■ Loading and Unloading: The Container object enables
the loading and unloading of entities into and out of the
storage units.

Station

■ Processing and Operation: Stations simulate the process-
ing or operation that occurs at a specific location within
the production system. Entities, such as parts or products,
move to the station for processing, assembly, inspection.

■ Statistical Analysis: The Station object can collect statisti-
cal data related to processing times, idle times, utilization
rates, and other performance metrics.

■ Processing Time and Variability: Each station has a de-
fined processing time for performing the associated opera-
tion on entities.

Assembly
Station

■ Assembly Workstation Representation: The Assembly
Station object serves as a representation of a physical
workstation dedicated to assembly operations within the
production system. It simulates the processes involved in
assembling components or parts to create finished prod-
ucts.

■ Assembly Time and Variability: Each Assembly Station
has a defined assembly time, representing the time taken
to perform the assembly operations on entities.

Drain

■ Entity Removal: The Drain object is responsible for re-
moving entities from the simulation model. It represents
the point where entities exit the system, indicating the
end of their lifecycle within the production process.

■ Entity Statistics: The Drain object can collect statistical
data related to the entities that pass through it.

Page 12

SharpShooters An Automated Assembly Line for the Luban Lock

Name Icon Effects

Pick And
Place

■ Pick and Place Locations: The PickAndPlace object de-
fines the source and destination locations for the pick-and-
place operations. Entities are picked up from the source
location and placed at the designated destination location.

■ Timing and Synchronization: PickAndPlace enables the
definition of timing and synchronization parameters for
the pick-and-place operations. Users can specify the time
taken for picking and placing entities, as well as any de-
lays or synchronization requirements between multiple
PickAndPlace objects or other processes within the sys-
tem.

■ Path Planning and Collision Avoidance: PickAndPlace
supports path planning and collision avoidance function-
alities to ensure safe and efficient movement of entities.

Conveyor

■ Material Transportation: The Conveyor object simulates
the movement of entities along a predefined path within
the production system. It represents the conveyance sys-
tems.

■ Routing and Paths: Conveyors can have multiple routing
options and paths within the simulation model.

■ Speed and Capacity: The Conveyor object supports the
specification of conveyor speed and capacity parameters.
Users can set the speed of conveyors to simulate realistic
transportation rates.

Table 4.1: Material Flow

4.2.2 | Information Flow

In addition, we use “List”, “Variable” and “Method” in information flow.

Name Icon Effects

List

■ Entity or Data Storage: The List object allows for the
storage of entities or data elements within a collection.
It provides a container to hold and organize these items,
facilitating efficient retrieval, modification, and analysis.

■ Iteration and Looping: Lists can be iterated over using
loops or iteration methods, allowing users to access and
process each item within the list.

Page 13

SharpShooters An Automated Assembly Line for the Luban Lock

Name Icon Effects

Method

■ Custom Procedures: Methods allow users to define custom
procedures or algorithms tailored to their specific simu-
lation needs. They encapsulate a series of instructions,
operations, or calculations that can be reused and invoked
at different points within the simulation model.

■ Data Manipulation: Methods provide a mechanism for
manipulating and processing data within the simulation
model. They can accept input parameters, perform cal-
culations, modify variables, update entity attributes, or
interact with other simulation objects to influence system
behavior.

■ Algorithmic Complexity: Methods support the implemen-
tation of complex algorithms or decision-making processes
within the simulation model. Users can define conditions,
loops, branching logic, or other control structures to handle
intricate simulation scenarios and model realistic system
behavior.

Variable

■ Data Storage: The Variable object serves as a container
for storing data within the simulation model. It can hold
various types of information, including numerical values,
Boolean values, strings, or custom-defined data types.

■ Dynamic Data Management: Variables enable the ma-
nipulation and management of dynamic data. Users can
perform operations such as assignment, arithmetic calcu-
lations, logical operations, or string manipulations on the
values stored in variables.

■ Data Tracking and Tracing: Variables allow for tracking
and tracing the changes in data values throughout the sim-
ulation model. Users can monitor the values of variables
at specific points in the model or during specific events,
enabling analysis and understanding of system behavior.

■ Data Sharing and Communication: Variables facilitate
data sharing and communication between different com-
ponents or objects within the simulation model.

Table 4.2: Information Flow

4.3 | Modeling
4.3.1 | Part

In the production process of LuBan locks, there are nine parts assembled in a specific order. To distinguish
between different parts, we use color variations for identification. To ensure the order and stability of
part supply, we use a data table to control the generation of parts from the material source in the correct
sequence.

Page 14

SharpShooters An Automated Assembly Line for the Luban Lock

(a) Part color (b) Parts table

Figure 4.2: Modify the color of parts and adjust the production sequence of parts.

Furthermore, to avoid blockages and excessive accumulation, we employ a dynamic adjustment of the
discharge interval for the material source. By using “Method” to modify the discharge intervals based on
production demands and pacing, we ensure a smooth and continuous supply of parts.
We also implement control at the outlet of the material source to modify the destination attribute of each
part, which facilitates subsequent recognition.

Figure 4.3: Parts destination and discharge intervals

These measures enable us to achieve accuracy, sequence, and stability in the supply of parts during the
production process of LuBan locks, ensuring the overall smooth operation of the production flow.

4.3.2 | Conveyor

In the production line of LuBan locks, conveyors play a vital role as a key component for transporting
parts to different nodes. Additionally, it is important for the robots to be able to place parts at various
nodes on the conveyor. However, in the simulation software, the robotic arms are only capable of placing
parts at the starting segment of the conveyor. Therefore, we have designed a multi-segment conveyor
system where each segment serves as a node, enabling the placement and retrieval of parts at different
nodes. To ensure accurate control and operation of parts on the conveyor, we utilize sensors for recognition.
Sensors are installed at nodes L14 and L15 of the conveyor, which detect the attributes of the parts, such
as their destination, as they pass through these nodes and trigger corresponding actions.

Page 15

SharpShooters An Automated Assembly Line for the Luban Lock

(a) Conveyor (b) Sensors setting

(c) Sensor L14 (d) Sensor L15

Figure 4.4: Conveyor and associated Settings

4.3.3 | Pick and place robot

In the production flow of LuBan locks, the robot R9 plays a crucial role. According to the design
requirements, the robot R9 should be capable of moving between positions P1 and P2, with a required
time of 0.75 seconds for each movement. However, in the simulation software, we are unable to directly
implement the movement functionality of the robot. Therefore, to simulate the functionality of robot R9,
we utilize two separate robots placed at P1 and P2 respectively. The time interval for transporting a part
from P1 to P2 is set to 0.75 seconds.

Figure 4.5: R9

Determining the appropriate node for placing each part is crucial for all robots. We use ”Method” to
identify the destination information of each part, allowing us to adjust the placement of parts by the
robots at the respective nodes. This intelligent mechanism ensures accurate part placement during the
production process, thereby enhancing the efficiency of the entire production flow.

4.3.4 | Processing robot

we use processing stations to simulate the process of manufacturing and labeling the parts. By adjusting
the processing time at the stations, we can simulate the actual time required for processing and labeling.
Additionally, at the exit of the processing stations, we use ”method” to modify the destination attribute
of the parts to facilitate subsequent assembly and other processes.

Page 16

SharpShooters An Automated Assembly Line for the Luban Lock

Figure 4.6: An example of robot placement code

4.3.5 | Assembly robot

A LuBan lock is assembled by sequentially combining nine components. To simulate the assembly process,
we utilize a material source and an assembly station, along with a robot mimicking either Robot R1 or R8.

Figure 4.7: Assembly robot R8

The specific assembly process is as follows:

■ The material source produces a container and places it onto the assembly station.

■ The robot receives parts from Robot R2 or R7 and places them onto the container (repeated nine
times).

■ Once the container is filled with the nine parts, the assembly station initiates the assembly process.

■ After a certain assembly time, the assembly of the LuBan lock is completed.Before the assembled
LuBan lock leaves the assembly station, we use “Method” to modify its destination attribute.

4.3.6 | Complete process

The model includes a material source, robots, a conveyor belt, and assembly and labeling processes. The
complete workflow of the entire model is as follows:

■ The material source produces unprocessed parts and sets their destination as the processing stations
(R3-6). Every 2.5 seconds, robot R9 P1 grabs a part from the material source and transfers it to
R9 P2 to simulate the movement process. R9 P2 places the part into the processing station (R3-6)
for processing. If all processing stations are occupied, the production time interval for the material
source is adjusted to 33 seconds. After processing, the processing station modifies the destination of
the part to the assembly station (R1 or R8). Then, R9 P2 retrieves the part from the processing
station and places it on conveyor belt node L8. This process is repeated nine times to handle nine
parts.

■ Sensors on the conveyor belt identify the destination of the parts at nodes L14 or L15. If the
destination is R2, robot R1 places the part on the assembly station of R2. If the destination is R8,
robot R7 places the part on the assembly station of R8. When the assembly station is filled with
nine parts, the assembly process of the Luban lock begins. Once assembly is complete, the assembly

Page 17

SharpShooters An Automated Assembly Line for the Luban Lock

station modifies the destination of the lock to CNC1 or CNC2. Then, robot R2 or R8 places the
lock back on the conveyor belt at nodes L14 or L15.

■ When the Luban lock reaches nodes L1 or L4 on the conveyor belt, robot R9 P1 removes the lock
from the conveyor belt and places it on the labeling station, where it waits for labeling. After the
labeling process, R9 P1 takes the labeled lock and places it at the output.

Figure 4.8: The complete model

Through the above process, we are able to simulate the operation of the Luban lock production assembly
line, ensuring the sequential processing, assembly, and labeling of parts, and ultimately obtaining fully
assembled Luban locks.

5 | Results

5.1 | Plant setting

Table 5.1: Machine Process Time

Process Time(s)
R3-R6 processing 30
R1&R8 assembling 20

CNC1&CNC2 labeling 5
R9 move between two position 0.75
R9 pick part from raw parts 0.25

R9 place part to R3-R6 0.25
R9 pick and place to other position 0.75
Other robot pick and place part 0.75

Page 18

SharpShooters An Automated Assembly Line for the Luban Lock

5.2 | Simulation results
In simulation, we simulate the worst case for this problem, which takes the longest makespan to produce
10 Luban locks at first, served as the baseline for the optimization. In the worst case, we schedule the
whole process as operation by operation and job by job, which means that we only produce one Luban
lock and machine one part of that Luban lock at one time. The baseline is denoted by the Type 1 in the
results, shown in Fig. 5.1 and 5.2. Then, based on the intuition and experience gained during the project,
we use the heuristic algorithm to increase the efficiency of machining machine and assembly machine to
optimize the result, denoted by Type 2 and Type 3 respectively. The optimization algorithm proposed in
Section 3 failed to provide the well scheduled plan (we’ve run the program beyond 24h in PC and it’s still
running), due to the curse of dimensionality and the complexity of this combinatorial FJSP problem. But
we believe the result of Type 2 and Type 2 are also near optimal schedule.

Figure 5.1: The comparison of each component working time proportion for 3 types

Figure 5.2: One Lu Ban lock process time

Page 19

SharpShooters An Automated Assembly Line for the Luban Lock

6 | Conclusion
We have designed three types of working mode using heuristic strategies mentioned before. The worst
case, we only machine one part at one time. And we improve it by making four parts processed together,
which increases the production rate and the time utilization. This method makes great contribution to
the processing time for 10 Luban locks from 3700s to 974s. And we further improve the working mode
by making the assembly machines work together which saves 104 seconds more. So that we found that
there is little affect by making this modification. This observation indicates the bottle neck of the plant
layout is the number of processing machines: R3-R6. To further improve the plant’s processing rate, we
may need to add more processing machine like R3-R6 or increase the processing speed of the machine to
reduce processing time.
Finished this project, we’ve progressed a lot, not only our personal skills in many aspects, but also the
team coherence. Better performance in future could be expected.

7 | Acknowledgement
All work of this project is finished by the team SharpShooters, supported by SHIEN-MING WU SCHOOL
OF INTELLIGENT ENGINEERING, Dr. Gang Chen and all people who provided valuable assistance.
Lots of online open-source websites provides useful materials, e.g. CSDN[1], Stack Overflow[4]. The
photos of this report are mainly from Google Images[3]. The mathematical modeling process is mainly
from S. Gaiardelli[2].

8 | References
[1] CSDN. Csdn. https://www.csdn.net/, 1999.

[2] Sebastiano Gaiardelli, Damiano Carra, Stefano Spellini, and Franco Fummi. On the impact of
transport times in flexible job shop scheduling problems. In 2022 IEEE 27th International Conference
on Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2022.

[3] Google Images. Google images. https://images.google.com/, 2001.

[4] Stack Overflow. Stack overflow. https://stackoverflow.com/?products, 2008.

Page 20

http://www2.scut.edu.cn/wusie/2021/1222/c25374a455519/page.htm
https://www.csdn.net/
https://images.google.com/
https://stackoverflow.com/?products

SharpShooters An Automated Assembly Line for the Luban Lock

9 | Appendix I: Operation Space

Figure 9.1: Operation Space Table

10 | Appendix II: MATLAB Code

1 % Define problem data
2 numJobs = 10;
3 numMachines = 11;
4 numOperations = 33;
5

6 processingTimes = ones(numJobs, numMachines, numOperations);
7 processingTimes(1,:,1) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
8 processingTimes(1,:,2) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
9 processingTimes(1,:,3) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];

10 processingTimes(1,:,4) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
11 processingTimes(1,:,5) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
12 processingTimes(1,:,6) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
13 processingTimes(1,:,7) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
14 processingTimes(1,:,8) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
15 processingTimes(1,:,9) = [100000,100000,100000,100000,100000,100000,100000,100000,1.5,100000,100000];
16 processingTimes(1,:,10) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
17 processingTimes(1,:,11) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
18 processingTimes(1,:,12) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
19 processingTimes(1,:,13) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
20 processingTimes(1,:,14) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
21 processingTimes(1,:,15) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
22 processingTimes(1,:,16) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
23 processingTimes(1,:,17) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
24 processingTimes(1,:,18) = [100000,100000,30,30,30,30,100000,100000,100000,100000,100000];
25 processingTimes(1,:,19) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
26 processingTimes(1,:,20) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
27 processingTimes(1,:,21) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
28 processingTimes(1,:,22) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
29 processingTimes(1,:,23) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
30 processingTimes(1,:,24) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];

Page 21

SharpShooters An Automated Assembly Line for the Luban Lock

31 processingTimes(1,:,25) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
32 processingTimes(1,:,26) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
33 processingTimes(1,:,27) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
34 processingTimes(1,:,28) = [100000,0.75,100000,100000,100000,100000,0.75,100000,100000,100000,100000];
35 processingTimes(1,:,29) = [20,100000,100000,100000,100000,100000,100000,20,100000,100000,100000];
36 processingTimes(1,:,30) = [100000,0.75,100000,100000,100000,100000,0.75,100000,100000,100000,100000];
37 processingTimes(1,:,31) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
38 processingTimes(1,:,32) = [100000,100000,100000,100000,100000,100000,100000,100000,100000,5,5];
39 processingTimes(1,:,33) = [100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,100000];
40

41 processingTimes(2,:,:) = processingTimes(1,:,:);
42 processingTimes(3,:,:) = processingTimes(1,:,:);
43 processingTimes(4,:,:) = processingTimes(1,:,:);
44 processingTimes(5,:,:) = processingTimes(1,:,:);
45 processingTimes(6,:,:) = processingTimes(1,:,:);
46 processingTimes(7,:,:) = processingTimes(1,:,:);
47 processingTimes(8,:,:) = processingTimes(1,:,:);
48 processingTimes(9,:,:) = processingTimes(1,:,:);
49 processingTimes(10,:,:) = processingTimes(1,:,:);
50

51

52 % Sequence of operations in a job if U(o1,o2) == 1, o1 should be scheduled
53 % before o2
54 U = triu(ones(numOperations,numOperations) − diag(ones(numOperations,1)));
55

56 % transferTimes = ones(numMachines,numMachines);
57 transferTimes = [0,0.75,100000,100000,100000,100000,100000,100000,100000,100000,100000;
58 0.75,0,9,9,9,9,100000,100000,100000,100000,100000;
59 100000,9,100000,0,100000,100000,6*0.75,100000,1.5,100000,100000;
60 100000,9,100000,100000,0,100000,6*0.75,100000,1.5,100000,100000;
61 100000,9,100000,100000,100000,0,6*0.75,100000,1.5,100000,100000;
62 100000,9,100000,100000,100000,100000,6*0.75,100000,1.5,100000,100000;
63 100000,100000,6*0.75,6*0.75,6*0.75,6*0.75,0,0.75,100000,7*0.75,7*0.75;
64 100000,100000,100000,100000,100000,100000,0.75,0,100000,100000,100000;
65 100000,100000,1.5,1.5,1.5,1.5,100000,100000,0,0.75,0.75;
66 100000,100000,100000,100000,100000,100000,100000,100000,0.75,0,100000;
67 100000,100000,100000,100000,100000,100000,100000,100000,0.75,100000,0];
68

69

70 % Create a binary variable indicating if an operation is assigned to a machine
71 x sch = optimvar('binvar',numJobs, numMachines,...
72 numOperations,'Type','integer','LowerBound',0,'UpperBound',1);
73

74 % Create the MILP optimization problem
75 problem = optimproblem('ObjectiveSense', 'minimize');
76

77 % Create variables for start times of each operation
78 startTimes = optimvar('startTimes', numJobs, numMachines, numOperations, 'LowerBound',...
79 0, 'Type', 'integer');
80 % Create variable for the final makespan
81 makespan = optimvar('makespan', 'LowerBound', 0, 'Type', 'integer');
82

83 % Create variables for the completion times of each operation
84 completionTimes = optimvar('completionTimes', numJobs, numOperations, 'LowerBound',...
85 0, 'Type', 'continuous');
86 for j = 1:numJobs
87 for o = 1:numOperations
88 Problem.Constraints(sprintf('CompletionTimeofJob%dOperation%d',j,o)) =...
89 sum(startTimes(j,:,o) + processingTimes(j,:,o)) == completionTimes(j,o);
90 end
91 end
92

93 % Add a constraint for makespan
94 for j = 1:numJobs
95 for o = 1:numOperations
96 problem.Constraints.(sprintf('MaxCompletionTimeJob%d', j)) = makespan >= completionTimes(j, o);
97 end
98 end
99

100 % Define the constraints
101

102 % Each operation of a job must be assigned to exactly one machine
103 for j = 1:numJobs

Page 22

SharpShooters An Automated Assembly Line for the Luban Lock

104 for o = 1:numOperations
105 problem.Constraints.(sprintf('Job%dOperation%d', j, o)) = sum(x sch(j, :, o)) == 1;
106 end
107 end
108

109 % Each machine can process one task at a time
110 for m = 1:numMachines
111 for j1 = 1:numJobs
112 %for j2 = 1:numJobs
113 for o1 = 1:numOperations
114 for o2 = 1:numOperations
115 if U(o1,o2) == 1
116 problem.Constraints.('EachMachineOneTaskAtATime') =...
117 startTimes(j1,m,o1) + processingTimes(j,m,o1) <= startTimes(j1,m,o2);
118 end
119 end
120 end
121 %end
122 end
123 end
124

125 % Sequence constraint: Operation o2 must be scheduled after operation o1 within each job
126 for j = 1:numJobs
127 for m = 1:numMachines
128 for l = 1:numMachines
129 for o1 = 1:numOperations
130 for o2 = 1:numOperations
131 if U(o1,o2) == 1
132 problem.Constraints.(sprintf('Job%dMachine%dOperation%dBeforeOperation%d',...
133 j, m, o1, o2)) = ...
134 startTimes(j, m, o1) + processingTimes(j, m, o1) + transferTimes(m, l) <=...
135 startTimes(j, l, o2);
136 end
137 end
138 end
139 end
140 end
141 end
142

143 % Define the objective function
144 problem.Objective = makespan;
145

146 % Solve the MINP problem
147 solver = 'ga'; % Solver for integer programming problems
148 options = optimoptions(solver, 'Display', 'final');
149 [solution, fval, ex tempitflag, output] = solve(problem, 'options', options);
150

151 % Display the optimal schedule and makespan
152 if ex tempitflag == 1
153 disp('Optimal schedule:');
154 disp(solution.binvar);
155 disp('Makespan:');
156 disp(fval);
157 else
158 disp('Failed to find an optimal solution.');
159 end

Page 23

	Introduction
	Design Background
	Project Description
	Project Assignment

	Problem Formulation in Mathematics
	Mathematical Modeling: Traditional Job Shop Scheduling Problem (JSP) and Flexible Job Shop Scheduling Problem (FJSP)
	Traditional Job Shop Scheduling Problem (JSP)
	Flexible Job Shop Scheduling Problem (FJSP)
	Comparison

	Assumptions and Clarifications
	Mathematical Model

	Optimization Method
	Optimization Methods for Flexible Job Shop Scheduling Problem
	Combinatorial Optimization and FJSP
	Common Algorithms for Combinatorial Optimization and FJSP

	MATLAB Optimization Toolbox
	MATLAB code

	Plant Simulation
	Software Description
	Components
	Material Flow
	Information Flow

	Modeling
	Part
	Conveyor
	Pick and place robot
	Processing robot
	Assembly robot
	Complete process

	Results
	Plant setting
	Simulation results

	Conclusion
	Acknowledgement
	References
	Appendix I: Operation Space
	Appendix II: MATLAB Code

